How are model protein structures distributed in sequence space?
نویسندگان
چکیده
منابع مشابه
Long- and short-range interactions in native protein structures are consistent/minimally frustrated in sequence space.
We show that long- and short-range interactions in almost all protein native structures are actually consistent with each other for coarse-grained energy scales; specifically we mean the long-range inter-residue contact energies and the short-range secondary structure energies based on peptide dihedral angles, which are potentials of mean force evaluated from residue distributions observed in p...
متن کاملHow Space Structures Language1
As Talmy has observed, language schematizes space; language provides a systematic framework to describe space, by selecting certain aspects of a referent scene while neglecting the others. Here, we consider the ways that space and the things in it are schematized in perception and cognition, as well as in language. We propose the Schematization Similarity Conjecture: to the extent that space is...
متن کاملStatistical potentials extracted from protein structures: how accurate are they?
"Statistical potentials" are energies widely used in computer algorithms to fold, dock, or recognize protein structures. They are derived from: (1) observed pairing frequencies of the 20 amino acids in databases of known protein structures, and (2) approximations and assumptions about the physical process that these quantities measure. Using exact lattice models, we construct a rigorous test of...
متن کاملPercolation in protein sequence space
The currently known protein sequences are not distributed equally in sequence space, but cluster into families. Analyzing the cluster size distribution gives a glimpse of the large and unknown extant protein sequence space, which has been explored during evolution. For six protein superfamilies with different fold and function, the cluster size distributions followed a power law with slopes bet...
متن کاملDistributed Protein Sequence Alignment
Given the explosive growth of biological sequence databases and the computational complexity of aligning large sequences over extremely large databases most researchers have opted for utilizing the BLAST algorithm. While BLAST is completely appropriate for some purposes, the more rigorous and more computationally expensive Smith-Waterman algorithm is preferred for certain purposes. This work pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 1997
ISSN: 0006-3495
DOI: 10.1016/s0006-3495(97)78268-7